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Abstract— Priority queues are fundamental in the design of 
modern multiprocessor algorithms. Priority queues with 
parallel access are an attractive data structure for applications 
like prioritized online scheduling, discrete event simulation, or 
branch-and-bound. This paper proposes an alternative 
approach: to base the design of concurrent priority queues on 
the Modified Skip List data structure. To this end, we show 
that a concurrent modified Skip List structure, following a 
simple set of modifications, provides a concurrent priority 
queue with a higher level of parallelism. Many algorithms for 
concurrent priority queues are based on mutual exclusion. 
However, mutual exclusion causes blocking which has several 
drawbacks and degrades the system’s overall performance. 
Non-blocking algorithms avoid blocking, and are either lock-
free or wait-free. Previously known non-blocking algorithms 
of priority queues did not perform well in practice because of 
their complexity, and they are often based on non-available 

atomic synchronization primitives. 

Keywords— TMSL, threaded chain , Put your keywords here, 
keywords are separated by comma. 

I. INTRODUCTION

In recent years there is mismatch between the construct of 
scalable software and the availability of larger computing 
platforms. We have seen rapidly increase in the number of 
processors available on commercial multiprocessors. 
Priority queues are of fundamental importance in the design 
of modern multiprocessor algorithms. Priority queues are 
useful in scheduling, discrete event simulation, networking 
(e.g., routing and realtime bandwidth management), graph 
algorithms (e.g.,Dijkstra’s algorithm), and artificial 
intelligence (e.g., A∗search). In these and other applications, 
not only is it crucial for priority queues to have low latency, 
but they must also offer good scalability and guarantee 
progress. Though there is a wide range of literature 
addressing the design of concurrent priority queue 
algorithms 
This paper begins to confrontation the issue of designing an 
efficient concurrent priority queue based on skip list data 
structure of Pugh et. al[1] and other popular heap structures 
found throughout  the literature. [3; 4; 5; 6;7; 
8;9 ;10;11;12;13;14;15;16;17]. Here we proposed an an 
alternative approach: for the design of concurrent priority 
queue on the modified skip list data structures of sartaj et. 
al[2]. This concurrent priority queue is designed with a 
change in the structure of modified skip list, it is presented 
in the simple form and produced significant performance 
gains. 

The next three subsections in the introduction summarize 
the focal points of the paper. 

II. PRIORITY QUEUE

Priority queues are a fundamental data structure with many 
applications. Priority queues manage a set of elements and 
support the operations an Insert of an item with a given 
priority, and a delete-min operation that returns the item of 
highest priority in the queue. Traditionally, priority queues 
have been implemented on the basis of heap[3; 4; 5; 6; 7; 
8;9 ;10;11;12;13;14;15;16;17].or search trees[18; 19]  data 
structures. Empirical evidence collected in recent years [6; 
8; 20] shows that heap-based structures tend to outperform 
search tree structures. This is probably due to a collection 
of factors, among them that for rebalancing the heap there is 
no need to lock the heap, and that Insert operations on a 
heap can proceed from bottom to root, thus minimizing 
contention along their concurrent traversal paths. The 
concurrent priority structure based on heap given by Hunt 
et. al [8] is known to be the best effective structure.  Its 
good performance is the result of several techniques for 
minimizing locking and contention: inserts traverse bottom 
up, only a single counter location is locked for a short 
duration by all operations, and a bit reversal scheme 
distributes delete requests that traverse top-down. There is 
one common problem with most of the algorithms for 
concurrent priority queues is the lack of precise defined 
semantics of the operations. The empirical evidence shows, 
that the algorithm balanced search trees and heaps suffer 
from the typical scalability impediments of centralized 
structures: sequential bottlenecks and increased 
contention.lotan et. al[21]. 

Haken et. al[22] presented a lock free algorithm of a 
concurrent priority queue that is for both pre-emptive  as 
well as for fully concurrent environments. It was 
implemented using common synchronization primitives that 
are available in modern systems. In a skip list data structure 
the  min element can be identified in O(1) time and deleted 
in O(log n) probalistic time,this was the one of the 
drawback of  skip list data structure  pointed by sartaj 
et.al[2]. The author   introduced the concept of priority 
queue based  on  modified skip list data structured MSL[2]. 
The concurrent access of priority queue based on modified 
skip list is the initial effords, in this direction .  
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III. THE NEW APPROACH 

According to sartaj.et.al [2], at first sight, it might imply 
that skip lists can be a better choice for priority queue than 
modified skip list. In case of skip list to search a list of n 
items, O (log n) level lists are traversed, and a constant 
number of items is traversed per level, making the expected 
overall complexity of an Insert or Delete operation on a 
SkipList O(logN) 
The elucidation  we put forward in this paper is to design 
concurrent priority queues based on the highly distributed 
Threaded Modified SkipList(TMSL) data structures of 
sartaj et. al [2]. Surprisingly, Modified SkipLists have 
received little attention in the parallel computing world, in 
spite of their highly decentralized nature. 
Modified skip list(MSL) is a search structure in which  each 
node has  one data field and three pointer fields :left, right, 
and down. Each level l chain worked solely as doubly 
linked list. The  down field of level l node x   points to the 
leftmost  node in the level l-1 chain that has key value 
larger than the key in x. H and T respectively , point to the 
head and tail of the level  lcurrent chain. Underneath figure 
1 shows the MSL. 
 

 
Fig. 1  Four level modified skiplist 

In case of MSL the minimum element is the first one in one 
of the lcurrent chains. By using an additional pointer filed 
in each node, we can thread the elements in an MSL into a 
chain. The elements appear in non-decending order on this 
chain. The subsequent threaded structure is referred to as 
TMSL (threaded modified skip list). When a TMSL is 
habituated, the delete min operation can be accomplished in 
O (1) expected time.    
In this paper we familiarize the lock-free access of threaded 
modified skip list(TMSL) in a concurrent environment. In 
order to provide concurrent access to MSL, a elementary 
adaptation is done in the structure of sartaj[2] , there is no 
insistence of down pointer for connecting one level to 
another level. There will be a pointer which works as a 
junction for threaded chain of MSL.  
 

IV. ALGORITHM 

By virtue of concurrent traversal of nodes they will be 
frequently allocated and reclaimed. We consider several 
aspects of memory management like no node should be 
reclaimed and then later re-allocated while some other 
process is traversing this node. This can be done with the 
help of reference counting. We have selected to use the 
lock-free memory management scheme invented by Valois 

[23] and corrected by Michael and Scott [24], which makes 
use of the FAA,TAS and CAS atomic synchronization 
primitives. The operations done by these primitives given 
underneath in figure 2, 3, 4 and 5. 
 
 
 
 
 

  Fig. 2 Variables Used 

 
 
 
 
 
 
 
 

  Fig. 3 Node Structure 

 
 
 
 
 

  Fig. 4 FAA Atomic primitive 

 
 
 
 
 
 
 
 

 

  Fig. 5 CAS Atomic primitive 

For doing insertion (or delete min) of a node from the 
TMSL we need to change the respective set of next pointers. 
These have to be changed consistently, but not necessary all 
at once. This can be possible if we have additional 
information on each node about its insertion (or deletion) 
status. This additional information will guide the concurrent 
processes that might traverse into one partial deleted or 
inserted node. After changing all necessary next pointers, 
the node is fully deleted or inserted. One problem, that 
arises with non-blocking implementations of priority queue 
with TMSL that are based on the linked-list structure, is 
when inserting a new node into the list,because of the 
linked-list structure one has to make sure that the previous 
node is not about to be deleted. If we are changing the next 
pointer of this previous node atomically with CAS, to point 
to the new node, and then immediately afterwards the 
previous node is deleted then the new node will be deleted 
as well, as illustrated in Figure 6. This problem can be 
resolved with the latest method introduced by Harris [25] is 
to use one bit of the pointer values as a deletion mark. On 
most modern 32-bit systems, 32-bit values can only be 

//Global variables  
    Node *head, *tail  
// Local variables 
    Node *node2 

Structure Node 
{ 
key : integer 
value : pointer to word 
next,prev : pointer to Node 
thread_ptr: pointer to node 
 } 

procedure FAA (address: pointer to 
word, number: integer) 
atomic do 
*address := *address + number; 

function CAS (address: pointer to word, oldvalue: word, 
new value: word):boolean 
atomic do 
if *address = old value then 
*address: = new value; 
return true; 
else  
return  false;
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located at addresses that are evenly dividable by 4, thereof 
ore bits 0 and 1 of the address are always set to zero. Any 
concurrent insert operation will then be notified about the 
deletion, when its CAS operation will fail.  
 
 

 
Fig. 6 Concurrent insert and delete operation can delete both nodes. 

 
One memory management issue is how to de-reference 
pointers safely. If we simply de-reference the pointer, it 
might be that the corresponding node has been reclaimed 
before we could access it. It can also be that bit 0 of the 
pointer was set, thus marking that the node is deleted, and 
therefore the pointer is not valid. The following functions 
are defined for safe handling of the memory management: 
shown in figure 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 7 Memory management function 
The detailed code for insertion and deletion operations 
appears in underneath subsection: 

A. Insertion  

Subsequently randomly picking a level for the node, a 
processor searches for whether to create a new level or to 
insert this new node in the existing levels. The main step of 
inserting a new node in TMSL is to fix the position of 
newly inserted node depends on the value of randomLevel 
function. I) Atomically update left and right pointer of 
newly inserted node II) update the next pointer of the to-be-
previous node and III) atomically update the prev pointer of 
the to-be-next node.IV) to connect the newly inserted node 
with threaded chain by updating the thread pointer For 
doing III step of insertion process update_insert procedure 
is used and for IVth step is done by update_thread function. 
 
 
 
 

________________________________________ 
Algorithm: insertion of node in concurrent TMSL 
funct ion inser t_node(key  in t  ,  value:  pointer  to  
word)  

{ 
node *p,*t,*save[max],*t_right,*up,*found_node 
k=randomlevel () 
if(k>current_level) 
current_level=current_level+1 
temp=current_level 
x=create_node (key, value) 
COPY_NODE(x) 
node1=COPY_NODE(head) 
If(k>temp)   // the generated level is more than the existing 
level 
{  

//create new head and tail 
h1=createnode(∞,∞) 
copy_node(h1) 
h1left=null 
h1right=x 
RELEASE_NODE(H1) 
t1=CreateNode(∞,∞) 
COPY_NODE (t1) 
t1left=x 
t1right=NULL 
RELEASE_NODE (t1) 
xleft=h1 
xright=t1 
RELEASE_NODE(t1) 
RELEASE_NODE(h1) 

} 
else  //the generated level is in between the existing levels 
{ 

level=head_ptr[k]  // head_ptr is array of pointer 
storing            address  of head  
for each level 

while(levelkey<xkey) 
level=levelright 
prev=READ_NODE(&levelleft) 
next=READ_NODE(&levelleftright) 
while T do 
if prevright!= <next,F> 
RELEASE_NODE(next) 
next=READ_NODE (&prevright) 
continue 
xleft=prev 
xright=next 
if CAS(&prevright,<next,F>,<x,F>) 
COPY_NODE(x) 
break 
back-off 
update_insert(x,next) 
} 
Update_thread(thread_ptr,x) 

} 
 
 
 
 

function READ_NODE (node  **address): 
/* De-reference the pointer and increase the reference counter 
for the corresponding node. In case the pointer is marked, 
NULL is returned */ 

procedure RELEASE_NODE(node: pointer to Node) 
/* Decrement the reference counter on the corresponding given 
node. If the reference count reaches zero, then call 
RELEASE_NODE on the nodes that this node has owned 
pointers to, then reclaim the node */ 

function COPY_NODE(node: pointer to Node):pointer 
to Node /* Increase the reference counter for the  corresponding 
given node */ 
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________________________________________ 
Algorithm: update the left field of to be next node in 
concurrent TMSL 

Procedure update_insert(x,next:pointer to node) 
While  T do 
link1=nextleft 
if IS_MARKED (link1) ||  xright!=<next,F>) 
 break 
if CAS(&nextleft ,link1 , <x,F>) 
COPY_NODE(x) 
RELEASE_NODE(linkp) 
if IS_MARKED(xleft)  
prev2=COPY_NODE(x) 
prev2=update_prev(prev2,next) 
RELEASE_NODE(prev2) 
break 
back-off 
RELEASE_NODE(next) 
RELEASE_NODE(x) 

________________________________________ 
Algorithm: update the thread filed of newly inserted node 
and next to new node in concurent TMSL 

procedure update_thread(thread_head,x) 
{ 

temp=COPY_NODE(thread_head) 
if(tempkey>xkey) 
{ 
xth_ptr=temp 
thread_ptr=COPY_NODE(x) 
RELEASE_NODE (x) 
return 
} 
else 
{  
while(temp!=NULL || tempkey< xkey) 
{ 
save=temp 
temp=tempth_ptr 
} 
xth_ptr=temp 
saveth_ptr=x 
} 
return 

} 
________________________________________ 

B. Deletion 

The delete_min operation starts from thread_heads 
node and find the first node (del_node) in TMSL that 
does not have deletion mark. Once the deletion mark is 
se,. the next step is to call the help_delete function to 
write the valid pointer on the right pointer of the 
previous node of the to-be-deleted node in TMSL chain. 
The update_prev function will update the left pointer of 
the right node of the to-be-deleted node in MSL chain. 
Once the node is deleted from TMSL chain the next 
step is to update the thread_head, which points the next 
of del_node. The algorithm has been designed for pre-
emptive as well as fully concurrent systems. In order to 

achieve the lock free property (that at least one thread 
is doing progress) on pre-emptive systems, whenever a 
node with deletion mark is set is found, it calls the 
help_delete operation. The help_ delete operation, tries 
to set the deletion mark of the prev pointer and then 
atomically update the next pointer of the previous node 
of the to-be-deleted node. This operation might execute 
concurrently with the corresponding delete_min 
operation, and therefore both operations synchronize 
with each other. node of node it is updated to be the 
next node. The update_prev sub-function, tries to 
update the prev pointer of a node and then return a 
reference to a possibly direct previous node, 
Because the help_delete and update_prev are habitually 
used in the algorithm for helping late operations that 
might influence otherwise stop progress of other 
concurrent operations. The algorithm is seemly for pre-
emptive as well as fully concurrent systems. In fully 
concurrent systems though, the helping approach as 
well as heavy assertion on atomic primitives can 
relegate the performance significantly. Therefore after 
a number of consecutive failed CAS operations in an 
algorithm, puts the current operations into back-off 
mode , the thread does nothing for a while,and in this 
way steer disturbing the concurrent operations that 
might diversely progress slower. The duration of the 
back-off is initialized to some value (e.g. proportional 
to the number of threads) at the start of an operation, 
and for each consecutive entering of the back-off mode 
during one operation invocation,the duration of the 
back-off is changed using some scheme. 

________________________________________ 
Algorithm: deletion of  node from TMSL  

 
delete_min(thread_ptr **node) 
{ 

prev=COPY_NODE(thread_head) 
if  (del_node==NULL) then 
RELEASE_NODE(del_node) 
RELEASE_NODE(del_node) 
return null 
i=1 
while T do 
    del_node=READ_NODE(&prevright) 
While(I<=current_level) 
{ 
if(head[i]next==del_node) 
{ 
chain_head=head[i] 
break 
} 
else 
i++ 
} 
 
link1=del_noderight 
if  IS_MARKED(link1) then  
help_del(del_node) 
continue 
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if CAS( &del_noderight,link1<link1.p,T>) 
then 
help_del(del_node) 
next=READ_NODE(&del_noderight) 
prev2=COPY_NODE(chain_head) 
prev2=update_prev(prev2,next) 
RELEASE_NODE(prev2) 
RELEASE_NODE(next) 
link2=READ_NODE(del_nodethread_ptr) 
thread_head=COPY_NODE(link2) 
continue 
break 
RELEASE_NODE(del_node) 
RELEASE_NODE(link2) 
back-off 
return   

} 

________________________________________ 
ALGORITHM  Mark previous  

procedure mark_prev(pointer to node node) 
while T do 
 link1=nodeleft 
 if IS_MARKED(link1) OR 
CAS(&nodeleft,link1,<link1.p,T> 
 break 

_________________________________________ 
Algorithm   Help delete for deletion of already marked  

pointer to node  function Help_Del(node: pointer 
to Node) 
 Mark_Prev(node) 
last=NULL 
prev= READ_NODE(&nodeleft) 
next= READ_NODE (&noderight) 
 while T do 
 if prev == next  then  
break 
 if IS_MARKED(nextright) then 
mark_prev(next) 
 Next2= READ_NODE (&nextright) 
 RELEASE_NODE(next) 
next=next2 
 continue 
 prev2= READ_NODE (&prevright) 
 if prev2 = NULL then 
 if last != NULL then 
 MarkPrev(prev) 
next2= READ_NODE (&prevright) 
if CAS(&lastright,<prev,F>),<next2,F>)  
 RELEASE_NODE(prev) 
 else 
 RELEASE_NODE(next2) 
 RELEASE_NODE(prev) 
prev=last 
 last=NULL 
 else 
prev2=READ_NODE(&prevleft) 
 RELEASE_NODE(prev) 
prev=prev2 
 continue 

 if prev2 != node then 
 if last !=NULL   then  
RELEASE_NODE(last) 
 last=prev 
 prev=prev2 
 continue 
RELEASE_NODE(prev2) 
 if CAS(&lprevright, <node,F>,<next,F>)  
 COPY_NODE(next) 
 RELEASE_NODE(node) 
 break 
 back-Off 
 if last != NULL then RELEASE_NODE(last) 
 RELEASE_NODE(left) 
RELEASE_NODE (next) 

________________________________________ 
ALGORITHM  Update the previous node  

function update_prev(prev,nodex: pointer to 
Node): pointer to Node 
 last=NULL 
 while T do 
prev2:=READ_NODE(&prevright) 
 if prev2 = NULL 
 if last != NULL  
mark_prev(prev) 
 next2:=READ_NODE(&prevright) 
 if CAS(&lastright,<prev,F>,<next2,F>)   
RELEASE_NODE (prev) 
else 
 RELEASE_NODE (next2) 
 RELEASE_NODE (prev) 
 prev=last 
 last=NULL 
 else 
 prev2=READ_NODE(&prevleft) 
 RELEASE_NODE (prev) 
prev=prev2 
 continue 
 link1=nodeleft 
 if IS_MARKED(link1)  
RELEASE_NODE (prev2) 
 break 
 if prev2!= node  
 if last!= NULL  
 RELEASE_NODE (last) 
 last=prev 
 prev:=prev2 
 continue 
 RELEASE_NODE (prev2) 
 if link1p = prev   
break 
 if (prevright = node) && 
CAS(&nodeleft,link1,<prev,F>)  
COPY_NODE(prev) 
 RELEASE_NODE (link1p) 
 if IS_MARKED(prevleft)  
 break 
 back-Off 
if last != NULL  
RELEASE_NODE (last) 
 return prev 

_____________________________________________________ 
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V. CORRECTNESS 

In this section we describe the correctness of presented 
algorithm .here we outline a proof of linearizabilityM. 
Herlihy et. al [26] and then we prove that algorithm is lock-
free. Few definitions are required before giving proof of 
correctness.  
Definition 1:    We denote with Mt the abstract internal 
state of a threaded modified skip list as priority queue  at 
the time t. Mt is viewed as a set of  of values (p,w) 
consisting of a unique priority p and a corresponding value 
w.The operations that can be performed on the structure  are 
Insert (I) and Delete_min(DM). The time t1 is defined as 
the time just before the atomic execution of the operation 
that we are looking at, and the time t2 is defined as the time 
just after the atomic execution of the same operation. The 
return value of true2 is returned by an Insert operation that 
has succeeded to update an existing node, the return value 
of true is returned by an Insert operation that succeeds to 
insert a new node. In the following expressions that defines 
the sequential semantics of our operations, the syntax is M1 : 
O1; M2, where M1 is the conditional state before the 
operation O1, and M2 is the resulting state after performing 
the corresponding operation: 
 
[p1,_ ]  €  Mt1 :  I1( [p1,w1 ] )  = TRUE, 
 
Mt2  =   Mt1 U  {  [p1 , w1 ]  }      (1) 
 
[ p1,w11 ] 	∈  Mt1  :  I1 ( [ p1 ,w12  ] )  = TRUE2 
 
Mt2=  Mt1 \  { [ p1 , w11 ] }  U   { [ p1 , w12 ]  }         (2) 
 
[ p1 ,w1 ] = min { [ min p , w ] | [ p , w ] ∈  Mt1 } 
DM1 ( ) = [ p1  , w1 ] , Mt2  =  Mt1 \ { [ p1  , w1]}      (3) 
 
Mt1 =  : DM1 ( ) = NULL                   (4) 
 
Definition 2: In order for an implementation of a 
shared concurrent data object to be linearizable [M. 
Herlihy et al.[1990], for every concurrent execution 
there should exist an equal (in the sense of the 
effect) and valid (i.e. it should respect the semantics 
of the shared data object) sequential execution that 
respects the partial order of the operations in the 
concurrent execution. 
Definition 3:   The pair [p, w] is present ([p, w] ∈ M) 
in the abstract internal state M of implementation, 
when there is a connected chain of next pointers (i.e. 
prevlinkright) from a present node in the 
doubly linked list that connects to a node that 
contains the value w, and this node is not marked 
as deleted (i.e. is_marked (node) =false) ). 
Definition 4: The decision point of an operation is 
outline as the atomic statement where the 
consequences  of the operation is  finitely decided, 
i.e. independent of the result of any sub operations 
after the decision point, the operation will have the 
same result. We also define the state-change point 

as the atomic statement where the operation 
changes the abstract internal state of the priority 
queue after it has passed the corresponding 
decision point. 
We will now practice these definitions to show the 
execution history of point where the concurrent 
operation occurred atomically. 
LEMMA 1 :AN insert_node operation which 
flourish (I [p, w]) = true), takes effect atomically at 
one statement. 
PROOF:  the  decision point for an  insert t operation 
which succeeds (I [ p , w ] = true ) when the CAS sub-
operation CAS(&prevright,<next, F>,<x, F>) of 
insert operation succeeds, and the insert operation 
will finally true. The atate of the list (Mt1) directly 
before passing of the decision point must have been  
[p, _ ] € Mt1, otherwise the CAS whould have failed . 
The state of the list directly after passing the 
decisison point will be [ p , w] ∈  Lt2. 
LEMMA 2 : A Delete_Min operation which get 
ahead (D() = [p , w] ), takes effect atomically at one 
statement. 
PROOF: the verdict point for an delete_min 
operation which sccceeds ( DM ( ) = [p , w] ) is when 
the CAS sub operation CAS (&del_node 
right,link1 < link1.p,T>)  flourish. The state of 
the list  ( Mt ) directly before passing  of the decision 
point must have been [ p ,w ] ∈		Mt , otherwisw the 
case would have failed . the state of the list after 
passing the decision point will be  [ p ,_ ]  € Lt 
LEMMA 3 : A delete_node operation which fails 
(DM() =NULL),takes effect atomically at one 
statement 
PROOF The decision point for a delete operation 
which fails (DM() =NULL) is the check in line if  
(del_node==NULL) . state of the list (M t) directly 
before the passing of the state-read point must have 
been  Mt =∅. 
2 

LEMMA 4:  With respect to the retries caused by 
synchronization, one operation will always do 
progress regardless of the actions by the other 
concurrent operations. 
PROOF: Here we examine the possible execution 
paths of our implementation of TMSL. There are 
numerous conceivably unbounded loops that can 
stalling the termination of the operations. We call 
these loops retry-loops. The retry-loops take place 
when sub-operations search-out that a shared 
variable has changed value. This is observed either 
by a subsequent read sub-operation or a failed CAS. 
These shared variables are only adapted 
concurrently by other CAS sub-operations. 
According to the explanation of CAS, for any 
number of concurrent CAS sub-operations, exactly 
one will succeed. This means that for any 
subsequent retry, there must be one CAS that 
succeeded. As this succeeding CAS will cause its 
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retry loop to exit, and our implementation does not 
contain any cyclic dependencies between retry-loops 
that exit with CAS, this means that the 
corresponding Insert or delete_min operation will 
progress. Thus, the one operation will always 
progress independent of any number of concurrent 
operations. 

VI. CONCLUSIONS 

Here we make known to concurrent threaded modified 
Skiplist using a remarkably simple algorithm in a lock free 
environment. Our enactment is raw, various optimization to 
our algorithm are possible like we can extend the 
correctness proof. Empirical study of our new algorithm on 
two different multiprocessor platforms is a pending work. 
The presented algorithm is first step to lock free algorithmic 
implementation of priority queue with modified skip list; it 
uses a fully described lock free memory management 
scheme. The atomic primitives used in our algorithm are 
available in modern computer system. 
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