
MSL Based Concurrent and Efficient Priority
Queue

Ranjeet Kaur#1, Dr. Pushpa Rani Suri#2

1Student, 2Professor
1, 2Department of Computer Science and Application.

Kurukshetra University, Kurukshetra
Haryana, India

Abstract— Priority queues are fundamental in the design of
modern multiprocessor algorithms. Priority queues with
parallel access are an attractive data structure for applications
like prioritized online scheduling, discrete event simulation, or
branch-and-bound. This paper proposes an alternative
approach: to base the design of concurrent priority queues on
the Modified Skip List data structure. To this end, we show
that a concurrent modified Skip List structure, following a
simple set of modifications, provides a concurrent priority
queue with a higher level of parallelism. Many algorithms for
concurrent priority queues are based on mutual exclusion.
However, mutual exclusion causes blocking which has several
drawbacks and degrades the system’s overall performance.
Non-blocking algorithms avoid blocking, and are either lock-
free or wait-free. Previously known non-blocking algorithms
of priority queues did not perform well in practice because of
their complexity, and they are often based on non-available

atomic synchronization primitives.

Keywords— TMSL, threaded chain , Put your keywords here,
keywords are separated by comma.

I. INTRODUCTION

In recent years there is mismatch between the construct of
scalable software and the availability of larger computing
platforms. We have seen rapidly increase in the number of
processors available on commercial multiprocessors.
Priority queues are of fundamental importance in the design
of modern multiprocessor algorithms. Priority queues are
useful in scheduling, discrete event simulation, networking
(e.g., routing and realtime bandwidth management), graph
algorithms (e.g.,Dijkstra’s algorithm), and artificial
intelligence (e.g., A∗search). In these and other applications,
not only is it crucial for priority queues to have low latency,
but they must also offer good scalability and guarantee
progress. Though there is a wide range of literature
addressing the design of concurrent priority queue
algorithms
This paper begins to confrontation the issue of designing an
efficient concurrent priority queue based on skip list data
structure of Pugh et. al[1] and other popular heap structures
found throughout the literature. [3; 4; 5; 6;7;
8;9 ;10;11;12;13;14;15;16;17]. Here we proposed an an
alternative approach: for the design of concurrent priority
queue on the modified skip list data structures of sartaj et.
al[2]. This concurrent priority queue is designed with a
change in the structure of modified skip list, it is presented
in the simple form and produced significant performance
gains.

The next three subsections in the introduction summarize
the focal points of the paper.

II. PRIORITY QUEUE

Priority queues are a fundamental data structure with many
applications. Priority queues manage a set of elements and
support the operations an Insert of an item with a given
priority, and a delete-min operation that returns the item of
highest priority in the queue. Traditionally, priority queues
have been implemented on the basis of heap[3; 4; 5; 6; 7;
8;9 ;10;11;12;13;14;15;16;17].or search trees[18; 19] data
structures. Empirical evidence collected in recent years [6;
8; 20] shows that heap-based structures tend to outperform
search tree structures. This is probably due to a collection
of factors, among them that for rebalancing the heap there is
no need to lock the heap, and that Insert operations on a
heap can proceed from bottom to root, thus minimizing
contention along their concurrent traversal paths. The
concurrent priority structure based on heap given by Hunt
et. al [8] is known to be the best effective structure. Its
good performance is the result of several techniques for
minimizing locking and contention: inserts traverse bottom
up, only a single counter location is locked for a short
duration by all operations, and a bit reversal scheme
distributes delete requests that traverse top-down. There is
one common problem with most of the algorithms for
concurrent priority queues is the lack of precise defined
semantics of the operations. The empirical evidence shows,
that the algorithm balanced search trees and heaps suffer
from the typical scalability impediments of centralized
structures: sequential bottlenecks and increased
contention.lotan et. al[21].

Haken et. al[22] presented a lock free algorithm of a
concurrent priority queue that is for both pre-emptive as
well as for fully concurrent environments. It was
implemented using common synchronization primitives that
are available in modern systems. In a skip list data structure
the min element can be identified in O(1) time and deleted
in O(log n) probalistic time,this was the one of the
drawback of skip list data structure pointed by sartaj
et.al[2]. The author introduced the concept of priority
queue based on modified skip list data structured MSL[2].
The concurrent access of priority queue based on modified
skip list is the initial effords, in this direction .

Ranjeet Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 851-857

www.ijcsit.com 851

III. THE NEW APPROACH

According to sartaj.et.al [2], at first sight, it might imply
that skip lists can be a better choice for priority queue than
modified skip list. In case of skip list to search a list of n
items, O (log n) level lists are traversed, and a constant
number of items is traversed per level, making the expected
overall complexity of an Insert or Delete operation on a
SkipList O(logN)
The elucidation we put forward in this paper is to design
concurrent priority queues based on the highly distributed
Threaded Modified SkipList(TMSL) data structures of
sartaj et. al [2]. Surprisingly, Modified SkipLists have
received little attention in the parallel computing world, in
spite of their highly decentralized nature.
Modified skip list(MSL) is a search structure in which each
node has one data field and three pointer fields :left, right,
and down. Each level l chain worked solely as doubly
linked list. The down field of level l node x points to the
leftmost node in the level l-1 chain that has key value
larger than the key in x. H and T respectively , point to the
head and tail of the level lcurrent chain. Underneath figure
1 shows the MSL.

Fig. 1 Four level modified skiplist

In case of MSL the minimum element is the first one in one
of the lcurrent chains. By using an additional pointer filed
in each node, we can thread the elements in an MSL into a
chain. The elements appear in non-decending order on this
chain. The subsequent threaded structure is referred to as
TMSL (threaded modified skip list). When a TMSL is
habituated, the delete min operation can be accomplished in
O (1) expected time.
In this paper we familiarize the lock-free access of threaded
modified skip list(TMSL) in a concurrent environment. In
order to provide concurrent access to MSL, a elementary
adaptation is done in the structure of sartaj[2] , there is no
insistence of down pointer for connecting one level to
another level. There will be a pointer which works as a
junction for threaded chain of MSL.

IV. ALGORITHM

By virtue of concurrent traversal of nodes they will be
frequently allocated and reclaimed. We consider several
aspects of memory management like no node should be
reclaimed and then later re-allocated while some other
process is traversing this node. This can be done with the
help of reference counting. We have selected to use the
lock-free memory management scheme invented by Valois

[23] and corrected by Michael and Scott [24], which makes
use of the FAA,TAS and CAS atomic synchronization
primitives. The operations done by these primitives given
underneath in figure 2, 3, 4 and 5.

 Fig. 2 Variables Used

 Fig. 3 Node Structure

 Fig. 4 FAA Atomic primitive

 Fig. 5 CAS Atomic primitive

For doing insertion (or delete min) of a node from the
TMSL we need to change the respective set of next pointers.
These have to be changed consistently, but not necessary all
at once. This can be possible if we have additional
information on each node about its insertion (or deletion)
status. This additional information will guide the concurrent
processes that might traverse into one partial deleted or
inserted node. After changing all necessary next pointers,
the node is fully deleted or inserted. One problem, that
arises with non-blocking implementations of priority queue
with TMSL that are based on the linked-list structure, is
when inserting a new node into the list,because of the
linked-list structure one has to make sure that the previous
node is not about to be deleted. If we are changing the next
pointer of this previous node atomically with CAS, to point
to the new node, and then immediately afterwards the
previous node is deleted then the new node will be deleted
as well, as illustrated in Figure 6. This problem can be
resolved with the latest method introduced by Harris [25] is
to use one bit of the pointer values as a deletion mark. On
most modern 32-bit systems, 32-bit values can only be

//Global variables
 Node *head, *tail
// Local variables
 Node *node2

Structure Node
{
key : integer
value : pointer to word
next,prev : pointer to Node
thread_ptr: pointer to node
 }

procedure FAA (address: pointer to
word, number: integer)
atomic do
*address := *address + number;

function CAS (address: pointer to word, oldvalue: word,
new value: word):boolean
atomic do
if *address = old value then
*address: = new value;
return true;
else
return false;

Ranjeet Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 851-857

www.ijcsit.com 852

located at addresses that are evenly dividable by 4, thereof
ore bits 0 and 1 of the address are always set to zero. Any
concurrent insert operation will then be notified about the
deletion, when its CAS operation will fail.

Fig. 6 Concurrent insert and delete operation can delete both nodes.

One memory management issue is how to de-reference
pointers safely. If we simply de-reference the pointer, it
might be that the corresponding node has been reclaimed
before we could access it. It can also be that bit 0 of the
pointer was set, thus marking that the node is deleted, and
therefore the pointer is not valid. The following functions
are defined for safe handling of the memory management:
shown in figure 7

 Fig. 7 Memory management function
The detailed code for insertion and deletion operations
appears in underneath subsection:

A. Insertion

Subsequently randomly picking a level for the node, a
processor searches for whether to create a new level or to
insert this new node in the existing levels. The main step of
inserting a new node in TMSL is to fix the position of
newly inserted node depends on the value of randomLevel
function. I) Atomically update left and right pointer of
newly inserted node II) update the next pointer of the to-be-
previous node and III) atomically update the prev pointer of
the to-be-next node.IV) to connect the newly inserted node
with threaded chain by updating the thread pointer For
doing III step of insertion process update_insert procedure
is used and for IVth step is done by update_thread function.

__
Algorithm: insertion of node in concurrent TMSL
funct ion inser t_node(key in t , value: pointer to
word)

{
node *p,*t,*save[max],*t_right,*up,*found_node
k=randomlevel ()
if(k>current_level)
current_level=current_level+1
temp=current_level
x=create_node (key, value)
COPY_NODE(x)
node1=COPY_NODE(head)
If(k>temp) // the generated level is more than the existing
level
{

//create new head and tail
h1=createnode(∞,∞)
copy_node(h1)
h1left=null
h1right=x
RELEASE_NODE(H1)
t1=CreateNode(∞,∞)
COPY_NODE (t1)
t1left=x
t1right=NULL
RELEASE_NODE (t1)
xleft=h1
xright=t1
RELEASE_NODE(t1)
RELEASE_NODE(h1)

}
else //the generated level is in between the existing levels
{

level=head_ptr[k] // head_ptr is array of pointer
storing address of head
for each level

while(levelkey<xkey)
level=levelright
prev=READ_NODE(&levelleft)
next=READ_NODE(&levelleftright)
while T do
if prevright!= <next,F>
RELEASE_NODE(next)
next=READ_NODE (&prevright)
continue
xleft=prev
xright=next
if CAS(&prevright,<next,F>,<x,F>)
COPY_NODE(x)
break
back-off
update_insert(x,next)
}
Update_thread(thread_ptr,x)

}

function READ_NODE (node **address):
/* De-reference the pointer and increase the reference counter
for the corresponding node. In case the pointer is marked,
NULL is returned */

procedure RELEASE_NODE(node: pointer to Node)
/* Decrement the reference counter on the corresponding given
node. If the reference count reaches zero, then call
RELEASE_NODE on the nodes that this node has owned
pointers to, then reclaim the node */

function COPY_NODE(node: pointer to Node):pointer
to Node /* Increase the reference counter for the corresponding
given node */

Ranjeet Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 851-857

www.ijcsit.com 853

__
Algorithm: update the left field of to be next node in
concurrent TMSL

Procedure update_insert(x,next:pointer to node)
While T do
link1=nextleft
if IS_MARKED (link1) || xright!=<next,F>)
 break
if CAS(&nextleft ,link1 , <x,F>)
COPY_NODE(x)
RELEASE_NODE(linkp)
if IS_MARKED(xleft)
prev2=COPY_NODE(x)
prev2=update_prev(prev2,next)
RELEASE_NODE(prev2)
break
back-off
RELEASE_NODE(next)
RELEASE_NODE(x)

__
Algorithm: update the thread filed of newly inserted node
and next to new node in concurent TMSL

procedure update_thread(thread_head,x)
{

temp=COPY_NODE(thread_head)
if(tempkey>xkey)
{
xth_ptr=temp
thread_ptr=COPY_NODE(x)
RELEASE_NODE (x)
return
}
else
{
while(temp!=NULL || tempkey< xkey)
{
save=temp
temp=tempth_ptr
}
xth_ptr=temp
saveth_ptr=x
}
return

}
__

B. Deletion

The delete_min operation starts from thread_heads
node and find the first node (del_node) in TMSL that
does not have deletion mark. Once the deletion mark is
se,. the next step is to call the help_delete function to
write the valid pointer on the right pointer of the
previous node of the to-be-deleted node in TMSL chain.
The update_prev function will update the left pointer of
the right node of the to-be-deleted node in MSL chain.
Once the node is deleted from TMSL chain the next
step is to update the thread_head, which points the next
of del_node. The algorithm has been designed for pre-
emptive as well as fully concurrent systems. In order to

achieve the lock free property (that at least one thread
is doing progress) on pre-emptive systems, whenever a
node with deletion mark is set is found, it calls the
help_delete operation. The help_ delete operation, tries
to set the deletion mark of the prev pointer and then
atomically update the next pointer of the previous node
of the to-be-deleted node. This operation might execute
concurrently with the corresponding delete_min
operation, and therefore both operations synchronize
with each other. node of node it is updated to be the
next node. The update_prev sub-function, tries to
update the prev pointer of a node and then return a
reference to a possibly direct previous node,
Because the help_delete and update_prev are habitually
used in the algorithm for helping late operations that
might influence otherwise stop progress of other
concurrent operations. The algorithm is seemly for pre-
emptive as well as fully concurrent systems. In fully
concurrent systems though, the helping approach as
well as heavy assertion on atomic primitives can
relegate the performance significantly. Therefore after
a number of consecutive failed CAS operations in an
algorithm, puts the current operations into back-off
mode , the thread does nothing for a while,and in this
way steer disturbing the concurrent operations that
might diversely progress slower. The duration of the
back-off is initialized to some value (e.g. proportional
to the number of threads) at the start of an operation,
and for each consecutive entering of the back-off mode
during one operation invocation,the duration of the
back-off is changed using some scheme.

__
Algorithm: deletion of node from TMSL

delete_min(thread_ptr **node)
{

prev=COPY_NODE(thread_head)
if (del_node==NULL) then
RELEASE_NODE(del_node)
RELEASE_NODE(del_node)
return null
i=1
while T do
 del_node=READ_NODE(&prevright)
While(I<=current_level)
{
if(head[i]next==del_node)
{
chain_head=head[i]
break
}
else
i++
}

link1=del_noderight
if IS_MARKED(link1) then
help_del(del_node)
continue

Ranjeet Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 851-857

www.ijcsit.com 854

if CAS(&del_noderight,link1<link1.p,T>)
then
help_del(del_node)
next=READ_NODE(&del_noderight)
prev2=COPY_NODE(chain_head)
prev2=update_prev(prev2,next)
RELEASE_NODE(prev2)
RELEASE_NODE(next)
link2=READ_NODE(del_nodethread_ptr)
thread_head=COPY_NODE(link2)
continue
break
RELEASE_NODE(del_node)
RELEASE_NODE(link2)
back-off
return

}

__
ALGORITHM Mark previous

procedure mark_prev(pointer to node node)
while T do
 link1=nodeleft
 if IS_MARKED(link1) OR
CAS(&nodeleft,link1,<link1.p,T>
 break

Algorithm Help delete for deletion of already marked

pointer to node function Help_Del(node: pointer
to Node)
 Mark_Prev(node)
last=NULL
prev= READ_NODE(&nodeleft)
next= READ_NODE (&noderight)
 while T do
 if prev == next then
break
 if IS_MARKED(nextright) then
mark_prev(next)
 Next2= READ_NODE (&nextright)
 RELEASE_NODE(next)
next=next2
 continue
 prev2= READ_NODE (&prevright)
 if prev2 = NULL then
 if last != NULL then
 MarkPrev(prev)
next2= READ_NODE (&prevright)
if CAS(&lastright,<prev,F>),<next2,F>)
 RELEASE_NODE(prev)
 else
 RELEASE_NODE(next2)
 RELEASE_NODE(prev)
prev=last
 last=NULL
 else
prev2=READ_NODE(&prevleft)
 RELEASE_NODE(prev)
prev=prev2
 continue

 if prev2 != node then
 if last !=NULL then
RELEASE_NODE(last)
 last=prev
 prev=prev2
 continue
RELEASE_NODE(prev2)
 if CAS(&lprevright, <node,F>,<next,F>)
 COPY_NODE(next)
 RELEASE_NODE(node)
 break
 back-Off
 if last != NULL then RELEASE_NODE(last)
 RELEASE_NODE(left)
RELEASE_NODE (next)

__
ALGORITHM Update the previous node

function update_prev(prev,nodex: pointer to
Node): pointer to Node
 last=NULL
 while T do
prev2:=READ_NODE(&prevright)
 if prev2 = NULL
 if last != NULL
mark_prev(prev)
 next2:=READ_NODE(&prevright)
 if CAS(&lastright,<prev,F>,<next2,F>)
RELEASE_NODE (prev)
else
 RELEASE_NODE (next2)
 RELEASE_NODE (prev)
 prev=last
 last=NULL
 else
 prev2=READ_NODE(&prevleft)
 RELEASE_NODE (prev)
prev=prev2
 continue
 link1=nodeleft
 if IS_MARKED(link1)
RELEASE_NODE (prev2)
 break
 if prev2!= node
 if last!= NULL
 RELEASE_NODE (last)
 last=prev
 prev:=prev2
 continue
 RELEASE_NODE (prev2)
 if link1p = prev
break
 if (prevright = node) &&
CAS(&nodeleft,link1,<prev,F>)
COPY_NODE(prev)
 RELEASE_NODE (link1p)
 if IS_MARKED(prevleft)
 break
 back-Off
if last != NULL
RELEASE_NODE (last)
 return prev

Ranjeet Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 851-857

www.ijcsit.com 855

V. CORRECTNESS

In this section we describe the correctness of presented
algorithm .here we outline a proof of linearizabilityM.
Herlihy et. al [26] and then we prove that algorithm is lock-
free. Few definitions are required before giving proof of
correctness.
Definition 1: We denote with Mt the abstract internal
state of a threaded modified skip list as priority queue at
the time t. Mt is viewed as a set of of values (p,w)
consisting of a unique priority p and a corresponding value
w.The operations that can be performed on the structure are
Insert (I) and Delete_min(DM). The time t1 is defined as
the time just before the atomic execution of the operation
that we are looking at, and the time t2 is defined as the time
just after the atomic execution of the same operation. The
return value of true2 is returned by an Insert operation that
has succeeded to update an existing node, the return value
of true is returned by an Insert operation that succeeds to
insert a new node. In the following expressions that defines
the sequential semantics of our operations, the syntax is M1 :
O1; M2, where M1 is the conditional state before the
operation O1, and M2 is the resulting state after performing
the corresponding operation:

[p1,_] € Mt1 : I1([p1,w1]) = TRUE,

Mt2 = Mt1 U { [p1 , w1] } (1)

[p1,w11] 	∈ Mt1 : I1 ([p1 ,w12]) = TRUE2

Mt2= Mt1 \ { [p1 , w11] } U { [p1 , w12] } (2)

[p1 ,w1] = min { [min p , w] | [p , w] ∈ Mt1 }
DM1 () = [p1 , w1] , Mt2 = Mt1 \ { [p1 , w1]} (3)

Mt1 = : DM1 () = NULL (4)

Definition 2: In order for an implementation of a
shared concurrent data object to be linearizable [M.
Herlihy et al.[1990], for every concurrent execution
there should exist an equal (in the sense of the
effect) and valid (i.e. it should respect the semantics
of the shared data object) sequential execution that
respects the partial order of the operations in the
concurrent execution.
Definition 3: The pair [p, w] is present ([p, w] ∈ M)
in the abstract internal state M of implementation,
when there is a connected chain of next pointers (i.e.
prevlinkright) from a present node in the
doubly linked list that connects to a node that
contains the value w, and this node is not marked
as deleted (i.e. is_marked (node) =false)).
Definition 4: The decision point of an operation is
outline as the atomic statement where the
consequences of the operation is finitely decided,
i.e. independent of the result of any sub operations
after the decision point, the operation will have the
same result. We also define the state-change point

as the atomic statement where the operation
changes the abstract internal state of the priority
queue after it has passed the corresponding
decision point.
We will now practice these definitions to show the
execution history of point where the concurrent
operation occurred atomically.
LEMMA 1 :AN insert_node operation which
flourish (I [p, w]) = true), takes effect atomically at
one statement.
PROOF: the decision point for an insert t operation
which succeeds (I [p , w] = true) when the CAS sub-
operation CAS(&prevright,<next, F>,<x, F>) of
insert operation succeeds, and the insert operation
will finally true. The atate of the list (Mt1) directly
before passing of the decision point must have been
[p, _] € Mt1, otherwise the CAS whould have failed .
The state of the list directly after passing the
decisison point will be [p , w] ∈ Lt2.
LEMMA 2 : A Delete_Min operation which get
ahead (D() = [p , w]), takes effect atomically at one
statement.
PROOF: the verdict point for an delete_min
operation which sccceeds (DM () = [p , w]) is when
the CAS sub operation CAS (&del_node
right,link1 < link1.p,T>) flourish. The state of
the list (Mt) directly before passing of the decision
point must have been [p ,w] ∈		Mt , otherwisw the
case would have failed . the state of the list after
passing the decision point will be [p ,_] € Lt
LEMMA 3 : A delete_node operation which fails
(DM() =NULL),takes effect atomically at one
statement
PROOF The decision point for a delete operation
which fails (DM() =NULL) is the check in line if
(del_node==NULL) . state of the list (M t) directly
before the passing of the state-read point must have
been Mt =∅.
2

LEMMA 4: With respect to the retries caused by
synchronization, one operation will always do
progress regardless of the actions by the other
concurrent operations.
PROOF: Here we examine the possible execution
paths of our implementation of TMSL. There are
numerous conceivably unbounded loops that can
stalling the termination of the operations. We call
these loops retry-loops. The retry-loops take place
when sub-operations search-out that a shared
variable has changed value. This is observed either
by a subsequent read sub-operation or a failed CAS.
These shared variables are only adapted
concurrently by other CAS sub-operations.
According to the explanation of CAS, for any
number of concurrent CAS sub-operations, exactly
one will succeed. This means that for any
subsequent retry, there must be one CAS that
succeeded. As this succeeding CAS will cause its

Ranjeet Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 851-857

www.ijcsit.com 856

retry loop to exit, and our implementation does not
contain any cyclic dependencies between retry-loops
that exit with CAS, this means that the
corresponding Insert or delete_min operation will
progress. Thus, the one operation will always
progress independent of any number of concurrent
operations.

VI. CONCLUSIONS

Here we make known to concurrent threaded modified
Skiplist using a remarkably simple algorithm in a lock free
environment. Our enactment is raw, various optimization to
our algorithm are possible like we can extend the
correctness proof. Empirical study of our new algorithm on
two different multiprocessor platforms is a pending work.
The presented algorithm is first step to lock free algorithmic
implementation of priority queue with modified skip list; it
uses a fully described lock free memory management
scheme. The atomic primitives used in our algorithm are
available in modern computer system.

REFERENCES
[1] W.Pugh. June 1990.Skip lists: A probabilistic alternative to

balanced trees. Communications of the ACM 33 .
[2] S. Cho and S. Sahni1998. Weight-biased leftist trees and modified

skip lists. ACM J. Exp. Algorithmics,
[3] R. Ayani. Lr-algorithm: concurrent operations on priority queues.

In Proceedings of the 2nd IEEE Symposium on Parallel and
Distributed Processing pp. 22-25, 1991.

[4] J. Biswas and J.C. Browne. Simultaneous Update of Priority
Structures In Proceedings of the 1987 International Conference on
Parallel Processing, August 1987, pp. 124{131.

[5] Sajal K. Das, Maria Cristina Pinotti, F. Sarkar. Distributed Priority
Queues on Hypercube Architectures. In International Conference on
Distributed Computing Systems (ICDCS) 1996:620-628

[6] N. Deo and S. Prasad. Parallel Heap: An Optimal Parallel Priority
Queue. In The Journal of Supercomputing, Vol. 6, pp. 87-98, 1992

[7] Q. Huang. An Evaluation of Concurrent Priority Queue Algorithms.
Technical Report, Massachusetts Institute of Technology, MIT-
LCS/MIT/LCS/TR-497, May 1991.

[8] G.C. Hunt, M.M. Michael, S. Parthasarathy and M.L. Scott. An
Efficient Algorithm for Concurrent Priority Queue Heaps. In
Information Processing Letters, 60(3):151{157, November 1996.

[9] Carlo Luchetti and M. Cristina Pinotti. Some comments on building
heaps in parallel. In Information Processing Letters, 47(3):145-148,
14 September 1993

[10] B. Mans. Portable Distributed Priority Queues with MPI. In
Concurrency: Practice and Experience, 10(3):175-198, March 1998.

[11] Optimal Parallel Initialization Algorithms for a Class of Priority
Queues. In IEEE Transactions on Parallel and Distributed Systems,
Vol. 2, No. 4, October 1991.

[12] Sushil K. Prasad and Sagar I. Sawant. Parallel Heap: A Practical
Priority Queue for Fine-to-Medium-Grained Applications on Small
Multiprocessors. In Proceedings of the Seventh IEEE Symposium
on Parallel and Distributed Processing (SPDP 95), 1995.

[13] A. Ranade, S. Cheng, E. Deprit, J. Jones, and S. Shih. Parallelism
and Locality in Priority Queues.In IEEE Symposium on Parallel and
Distributed Processing, Dallas, Texas, October 1994

[14] V. N. Rao and V. Kumar. Concurrent access of priority queues.
IEEE Transactions on Computers 37, 1657-1665, December 1988.

[15] P. Sanders. Fast priority queues for parallel branch-and-bound. In
Workshop on Algorithms for Irregularly Structured Problems,
number 980 in LNCS, pages 379-393, Lyon, 1995. Springer.

[16] P. Sanders. Randomized Priority Queues for Fast Parallel Access.
In Journal of Parallel and Distributed Computing, 49(1), 86 - 97,
1998.

[17] Y. Yan and X. Zhang. Lock Bypassing: An Efficient Algorithm for
Concurrently Accessing Priority Heaps. ACM Journal of
Experimental Algorithmics, vol. 3,
1998.http://www.jea.acm.org/1998/YanLock/

[18] J. Boyar, R. Fagerberg and K.S. Larsen. Chromatic Priority Queues.
Technical Report, Department of Mathematics and Computer
Science, Odense University, PP-1994-15, May 1994.

[19] T. Johnson. A Highly Concurrent Priority Queue Based on the B-
link Tree. Technical Report,University of Florida, 91-007. August
1991.

[20] N. Shavit and A. Zemach. Concurrent Priority Queue Algorithms.
In Proceedings of the Eighteenth Annual ACM Symposium on
Principles of Distributed Computing, pages 113-122, Atlanta, GA,
May 1999.

[21] LOTAN, N. SHAVIT. Skiplist-Based Concurrent Priority Queues.
International Parallel and Distributed Processing Symposium, 2000.

[22] H. Sundell and P.Tsigas.2003. Fast and Lock-Free Concurrent
Priority Queues for Multi-Thread Systems. In Proceedings of the
17th International Parallel and Distributed Processing Symposium,
page 11. IEEE press.

[23] J. D. Valois.1995. Lock-Free Data Structures. PhD. Thesis,
Rensselaer Polytechnic Institute, Troy, New York.

[24] M. Michael, M. Scott.1995. Correction of a Memory Management
Method for Lock-Free Data Structures. Computer Science Dept.,
University of Rochester.

[25] T. L. Harris. Oct. 2001.A Pragmatic Implementation of Non-
Blocking Linked Lists. Proceedings of the 15th International
Symposium of Distributed Computing,

[26] M. Herlihy and J. Wing.1990. “Linearizability: a correctness
condition for concurrent objects,” ACM Transactions on
Programming Languages and Systems,vol. 12, no. 3, pp. 463–492.

Ranjeet Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 851-857

www.ijcsit.com 857

